Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Janet M. S. Skakle,* Mark R. St J. Foremant and M. John Plater

Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland

+ Present address: Department of Chemistry, Imperial College of Science, Technology and Medicine, Exihibition Road, London SW7 2AY, England.

Correspondence e-mail: j.skakle@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=302 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.042$
ωR factor $=0.135$
Data-to-parameter ratio $=21.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[(2,2'-bipyridine-N, N^{\prime})cobalt(II)]-$\mu-4,4^{\prime}$-oxydibenzoato- $\left.O, O^{\prime}: O^{\prime \prime}, O^{\prime \prime \prime}\right]$

The title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{5}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$, forms a polymeric chain via bidentate coordination of the carboxylate ligands from $\mu-4,4^{\prime}$-oxydibenzoate to the Co atoms. The chelating bipyridyl ligands stack with inverted forms along the [100] direction and are separated by 3.7952 (16) A. The Co atom has a distorted octahedral geometry.

Comment

Coordination compounds crystallized from polyaromatic acids and metal ions are of interest for their polymeric network structures and their magnetic and porous properties (Yaghi et al., 1995, 1996; Plater, Roberts \& Howie, 1998; Plater, Roberts, Marr et al., 1998; Plater et al., 1999; Kepert \& Rosseinsky, 1999). The title compound, (I) (Fig. 1), synthesized from cobalt acetate tetrahydrate, 4,4'-oxydibenzoic acid and 2,2bipyridyl, forms such a one-dimensional polymer containing chains of Co atoms linked together by the carboxylate ligands (Fig. 2). These chains interact via $\pi-\pi$ interactions between adjacent, inverted bipyridyl ligands stacking along [100].

Received 9 March 2001
Accepted 19 March 2001
Online 31 March 2001

The Co atom has a distorted octahedral environment (Table 1) formed from two N atoms from the chelating

Figure 1
The title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) $x+\frac{3}{2},-y+\frac{1}{2}, z+\frac{1}{2}$.]

Figure 2
Formation of polymeric chains of Co atoms linked by the diacid.

Figure 3
View of the packing of the structure within the unit cell, showing the 'square wave' diacid chains and the superposition of the bipyridyl ligands which lead to $\pi-\pi$ interactions in the [100] direction.
bipyridyl and four carboxylate O atoms (two bidentate ligands). The aromatic rings in the diacid are oriented at $80.79(9)^{\circ}$ to one another, giving a 'square wave' shape to the chain (Fig. 3).

Experimental

Cobalt acetate tetrahydrate ($102 \mathrm{mg}, 0.410 \mathrm{mmol}$), 2, 2'-bipyridyl ($63 \mathrm{mg}, 0.403 \mathrm{mmol}$), 4, 4^{\prime}-oxydibenzoic acid ($105 \mathrm{mg}, 0.407 \mathrm{mmol}$) and water (20 ml) were placed in a 45 ml bomb. After sealing, the bomb was heated at $100 \mathrm{~K} \mathrm{~h}^{-1}$ to 503 K ; this temperature was maintained for 2 h , after which the bomb was cooled at $5 \mathrm{~K} \mathrm{~h}^{-1}$ to 453 K . After a further 6 h , the bomb was cooled at $5 \mathrm{~K} \mathrm{~h}^{-1}$ to 293 K . The bomb was opened and the resultant solid collected by filtration, washed with water and dried in air. Red needle-shaped crystals were selected for analysis.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{5}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$	$D_{x}=1.497 \mathrm{Mg} \mathrm{m}^{-3}$ $M_{r}=471.32$
Monoclinic, $P 2_{1} / n$	Cell parametion from 18261
$a=7.8975(4) \AA$	reflections
$b=17.6323(8) \AA$	$\theta=2.3-30.0^{\circ}$
$c=15.1057(7) \AA$	$\mu=0.86 \mathrm{~mm}^{-1}$
$\beta=96.360(1)^{\circ}$	$T=302(2) \mathrm{K}$
$V=2090.54(17) \AA^{3}$	Needle, red
$Z=4$	$0.4 \times 0.1 \times 0.1 \mathrm{~mm}$
Data collection	
Bruker SMART 1000 area CCD	6071 independent reflections
\quad diffractometer	3584 reflections with $I>2 \sigma(I)$
$\varphi-\omega$ scans	$R_{\text {int }}=0.050$
Absorption correction: multi-scan	$\theta_{\text {max }}=30.0^{\circ}$
$\quad(S A D A B S ;$ Bruker, 1999)	$h=-10 \rightarrow 11$
$T_{\text {min }}=0.816, T_{\text {max }}=0.928$	$k=-24 \rightarrow 22$
18 261 measured reflections	$l=-21 \rightarrow 21$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.135$
$S=0.94$
6071 reflections
289 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.075 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.30 \mathrm{e}_{\mathrm{m}} \AA^{-3}$
$\Delta \rho_{\max }=0.30 \mathrm{e}^{2} \AA^{-3}$
$\Delta \rho_{\min }=-0.34 \mathrm{e}^{-3}$

Table 1

Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{O} 1$	$2.0885(16)$	$\mathrm{Co} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.1203(17)$
$\mathrm{Co} 1-\mathrm{N} 1$	$2.092(2)$	$\mathrm{Co} 1-\mathrm{O} 5^{\mathrm{i}}$	$2.1513(18)$
$\mathrm{Co} 1-\mathrm{N} 2$	$2.103(2)$	$\mathrm{Co} 1-\mathrm{O} 2$	$2.1837(18)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	$101.21(7)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{O} 5^{\mathrm{i}}$	$156.61(8)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2$	$99.95(8)$	$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 5^{\mathrm{i}}$	$61.62(6)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2$	$77.94(8)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 2$	$61.65(6)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 4^{\mathrm{i}}$	$159.03(7)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 2$	$161.10(7)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 4^{\mathrm{i}}$	$95.15(7)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{O} 2$	$96.39(8)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{O}^{\mathrm{i}}$	$96.20(7)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 2$	$103.43(6)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O}^{\mathrm{i}}$	$103.38(7)$	$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 2$	$96.11(7)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O}^{\mathrm{i}}$	$95.75(8)$		

Symmetry code: (i) $\frac{3}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C2-H2 $\cdots \mathrm{O}^{\text {i }}$		0.93	2.58	$3.317(4)$
C13-H13 $\cdots 4^{\text {ii }}$	0.93	2.45	$3.201(3)$	136
C20-H20 $\cdots 1^{\text {iii }}$	0.93	2.53	$3.419(3)$	159
Symmetry codes: (i) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z ;$ (ii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$				

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97.

We wish to acknowledge the use of the EPSRC's Chemical Database Service at Daresbury (Fletcher et al., 1996).

References

Bruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.
Fletcher, D. A., McMeeking, R. F. \& Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.
Kepert, C. J. \& Rosseinsky, M. J. (1999). J. Chem. Soc. Chem. Commun. pp. 375-376.
Plater, M. J., Roberts, A. J. \& Howie, R. A. (1998). J. Chem. Soc. Chem. Comтии. pp. 893-894.
Plater, M. J., Roberts, A. J., Marr, J., Lachowski, E. E. \& Howie, R. A. (1998). J. Chem. Soc. Dalton Trans. pp. 797-802.

Plater, M. J., Foreman, M. R. St J., Coronado, E., Gomez C. J. \& Slawin, A. M. Z. (1999). J. Chem. Soc. Dalton Trans. pp. 4209-4216.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2000). PLATON. May 2000 Version. University of Utrecht, The Netherlands.
Yaghi, O. M., Li, G. \& Li, H. (1995). Nature, 378, 703-706.
Yaghi, O. M., Li, H. \& Groy, T. L. (1996). J. Am. Chem. Soc. 118, 9096-9101.

